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ABSTRACT 
 
3D model retrieval techniques can be classified as 
histogram-based, view-based and graph-based approaches. 
We propose a hybrid shape descriptor which combines the 
global and local radial distance features by utilizing the 
histogram-based and view-based approaches respectively. 
We define an area-weighted global radial distance with 
respect to the center of the bounding sphere of the model 
and encode its distribution into a 2D histogram as the 
global radial distance shape descriptor. We then uniformly 
divide the bounding cube of a 3D model into a set of small 
cubes and define their centers as local centers. Then, we 
compute the local radial distance of a point based on the 
nearest local center. By sparsely sampling a set of views 
and encoding the local radial distance feature on the 
rendered views by color coding, we extract the local radial 
distance shape descriptor. Based on these two shape 
descriptors, we develop a hybrid radial distance shape 
descriptor for 3D model retrieval. Experiment results show 
that our hybrid shape descriptor outperforms several 
typical histogram-based and view-based approaches.  
 
Keywords: radial distance, histogram-based retrieval, 
view-based retrieval, hybrid feature, color coding 
 

1. INTRODUCTION 
 
3D model retrieval is now recognized as one of the 
important research areas in computer graphics and 
multimedia. The fundamental part of a 3D model retrieval 
algorithm is the construction of a shape descriptor to 
represent and compare different models. In recent years, 
there have been many studies in proposing distinctive 
shape descriptors. They can be classified into three groups, 
which are histogram-based [1, 21, 14], view-based [4, 23, 
20] and graph-based [8, 25].  
 
It is well known that histogram-based approach is difficult 
to achieve high accuracy but it can extract shape features 
efficiently, and view-based approach can achieve better 
retrieval performance. Generally, it is difficult for a single 
type of shape descriptor to perform well for all kinds of 
models and usually a hybrid shape descriptor can perform 
better.  
 

Motivated by the above facts, we propose a hybrid radial 
distance shape descriptor by fusing the histogram-based 
and view-based approaches. We represent global radial 
distance feature using a histogram-based descriptor and 
local radial distance feature using a view-based approach. 
Our local radial distance feature can already achieve a 
satisfying retrieval performance. Adding the global radial 
distance feature improves the performance further without 
adding much computation load because of an efficient 
histogram-based feature extraction process. Based on our 
experiments on two standard databases, we found our 
hybrid approach can outperform typical histogram-based 
approach, such as shape distribution [21, 22] and shape 
histogram [1] and view-based approach such as LightField 
descriptor [4]. The speed of our algorithm is also 
satisfying.  
 
The rest of the paper is organized as follows. We discuss 
the related work in Section 2. Section 3 introduces the 
global and local radial distance features. In Section 4, we 
describe the 3D model retrieval algorithm based on the 
proposed hybrid radial distance shape descriptor. The 
performance of our approach is verified and compared 
using the PSB [24] and NTU [4] databases, which are 
detailed in Section 5. We conclude the work and list future 
topics in Section 6. 
 

2. RELATED WORK 
 
Natraj et al. [19] and Tangelder et al. [26] classified and 
compared different 3D model retrieval techniques in their 
respective surveys. In this section, we mainly review the 
related work in the histogram-based and view-based 
techniques. Histogram-based techniques use the 
distribution of features extracted based on geometric 
elements, such as vertices and faces to represent a 3D 
model. Both 1D and 2D histograms are often used. Shape 
distribution [21, 22], shape histogram [1] and 3D shape 
context [14, 18, 9, 6] are three typical histogram-based 
techniques.  
 
Shape distribution [21, 22] focus on geometric shape 
function that measures the distance between two random 
points on the surface of the model. These probability 
distributions of the models are compared during the 
retrieval process.  



Shape histogram [1] computes the distance from the center 
of mass and spherical angle for each surface point. Then it 
encodes the distance distribution into a histogram, whose 
bins are formed according to three types of 3D space 
partitioning methods: Shells (only use distance), Sectors 
(only use spherical angle) and Spider Web (use both). 
 
3D shape context [14, 18, 6, 9] is based on the idea of 2D 
shape context [3], which is a log-polar histogram and 
defines the relative distribution of other points with respect 
to a point. The generalized shape context [18] directly 
extends the idea from 2D to 3D. There are three other 
forms of 3D shape context based on three different 3D 
space partitioning, named Shell, Sector and Spider. Shell 
model divides the 3D space into a set of concentric spheres 
[6]. Sector model divides the 3D space in the spherical 
angle space and partitions it into several sectors, and this 
makes the 3D cylindrical shape context [9]. Spider web 
model combines both [14].  
 
Ben-Chen and Gotsman [2] proposed a new 3D shape 
descriptor named conformal factor which depicts the 
amount of local work involved to transform a model into a 
sphere. Then, they use the histogram of the conformal 
factor to depict the feature of a 3D model and use L1 
distance to measure the difference between two feature 
histograms. Spherical harmonics [12], spherical wavelet 
[16] and moments-based approaches [5] can be also 
regarded as extended histogram-based techniques.   
 
In the view-based techniques, features are extracted based 
on the rendered view images. The visual similarities 
between the rendered view images of different models are 
compared with each other to measure the difference of the 
models. LightField [4] is a famous view-based shape 
descriptor. It defines the distance of two models as the 
minimal distance between their 10 corresponding 
silhouette views. To measure the difference of two 
silhouette views, it uses a hybrid image metric [29] which 
integrates the Zernike moments descriptor and Fourier 
descriptor. Multiple view descriptor [10] first aligns the 
model with Principle Component Analysis (PCA) [11] and 
then classifies models by comparing the primary, 
secondary and tertiary views defined by the principle axes.  
 
Salient local visual feature-based retrieval method [23] first 
renders a set of depth view images for a 3D model and then 
extracts the multi-scale local features of these views using 
Scale Invariant Feature Transform (SIFT) [17], which is 
invariant to translation, scaling and rotation. Finally, it 
fuses all these local features into a histogram using 
Bag-Of-Features (BoF) approach, which accumulates the 
visual words (extends from the bag-of-words in text 
retrieval) of multiple views into a single histogram to 
represent the feature of a 3D model.  
 
Recently, Petros et al. [20] proposed another view-based 
descriptor named Compact Multi-View Descriptor 
(CMVD), which supports multimodal retrieval such as 
sketches, images and models-based retrieval. It utilizes 
both binary and depth view images of models.  

3. GLOBAL AND LOCAL RADIAL 
DISTANCE FEATURES EXTRACTION 

 
3.1 Overview of Feature Extraction 
 
We use global and local radial distance features to 
represent a 3D model. The feature extraction procedure 
consists of two steps: first normalize the 3D model and 
then compute the two features. For the normalization part, 
we first compute the bounding sphere of the 3D model 
based on the algorithm in [28] and an efficient 
implementation of the algorithm developed in [7]. Then, 
we translate the model so that the center of the bounding 
sphere coincides with the origin of the coordinate system 
and then scale the model to make the radius of the 
bounding sphere to be 1.0. Next, we need to align the 3D 
models. We can perform an approximate alignment based 
on Principle Component Analysis (PCA) [11], continuous 
PCA [27], or other alignment algorithms. However, to 
focus on the descriptor itself and to test its optimal 
performance, in our experiments, we manually front-pose 
aligned the models. For the second step of feature 
extraction, we present the details in Section 3.2 and Section 
3.3 respectively.  
 
3.2 Global Radial Distance Feature Extraction 
 
Based on the idea of shape histogram [1], we define a 
global radial distance descriptor. Global radial distance 
descriptor captures the geometric distribution of the surface 
of a 3D model. Since the center of its bounding sphere 
coincides with the origin after the coordinate normalization, 
the global radial distance of one point p on the surface of a 
3D model is just the magnitude of the vector from the 
origin to p. To compute the descriptor of a 3D model, we 
uniformly divide the spherical angle space of the bounding 
sphere into a set of bins and in each bin we store the 
average radial distance of all the points in the bin as the 3D 
radial distance value. For a vector v originated from the 
origin to a point p, we assume the angle between v and y/x 
axis is �/� (���[0, 180], ���[0, 360)) respectively. The 
intervals for dividing the � and � angle spaces are �� and 
��, then we define each bin as follows, 
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Assume a 3D model H consists of n vertices 
V={v1,v2,…,vn}, and m faces F={f1,f2,…,fm}. The centers of 
F are C={c1,c2,…,cm} and the areas of F are 
A={a1,a2,…,am}. Since the numbers of vertices in similar 
3D models may be drastically different, we propose an 
area-weighted radial distance shape descriptor, 
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It weights the radial distances of all the face centers in the 
bin by their respective face areas.  
 
Based on our experiments, we found that choosing the 



centers of faces rather than the vertices directly can achieve 
better retrieval performances in terms of precision-recall 
plots. We tested segmenting the spherical angle space of 
the bounding sphere with different intervals: ��=��=45%, 
��=��=30% , ��=��=15% , ��=��=10%  and found that 
fixing the steps to be 30% can achieve the best results. 
Therefore, in our experiments, we choose ��=��=30%, and 
thus divide the bounding sphere into 72 bins and the global 
radial distance descriptor is a 6×12 matrix. Examples of the 
global radial distance feature are shown in Figure 1. We 
can see that similar models have similar global radial 
distance descriptors and the radial distance distributions of 
different models are often distinctively different. It is also 
very fast to compute these global radial distance features.  
 

 
Fig. 1: Examples of global radial distance features. 

 
3.3 Local Radial Distance Feature Extraction 
 
Global radial distance only captures the global statistical 
property in the meaning of the radial distances with respect 
to the center of the bounding sphere of a 3D model. The 
main advantage of this approach is its high efficiency in 
terms of feature extraction time. However, the retrieval 
performance of this feature alone is not satisfying. To 
enhance retrieval performance, we combine it with a local 
radial distance feature.  
 
Local radial distance is computed based on a local center 
rather than the global center of a 3D model. It captures the 
local geometry property: local radial distance distribution 
on view images. The view images capture both the 2D and 
3D information of a 3D model. 
 
First, we define a set of local centers by uniformly dividing 
the axis-aligned bounding cube of a 3D model into a set of 
small cubes. Since we normalize a 3D model into a 
bounding sphere with a radius of 1, the bounding cube is,  

��&' � (' � )'	�&' � (' � )' � *+���,������������������(3)�
If we divide the bounding cube into N×N×N small cubes, 
then the coordinates of the local centers of these small 
cubes are,  
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One example (N=3, 27 local centers) is shown in Figure 2.  
 

 
Fig. 2: Sampling local centers based on uniformly dividing 
the bounding cube into 27 (3×3×3) local small cubes. The 
circles represent the local centers. The lines between the 
circles are used to show their relative positions.  
 
Then, for every vertex on the surface of the model, we find 
the closest local center and compute the distance d between 
the vertex and its closest local center. We use d to represent 
the local radial distance feature of a vertex. 
 
Next, we encode this local feature as grayscale information 
into a rendered view image by color coding. We sparsely 
sample only 13 views for each model by setting cameras at 
the following locations on a cube: {(1,1,1), (-1,1,1), 
(-1,-1,1), (1,-1,1), (1,0,0), (0,1,0), (0,0,1), (1,0,-1), (0,1,-1), 
(1,1,0), (0,1,1), (1,0,1), (1,-1,0)}. They are composed of 4 
top corners, 3 adjacent face centers and 6 middle edge 
points, respectively. In the rendering, for every vertex, we 
use its local radial distance d as its (r, g, b) color values. 
By adopting the smooth shading, we approximate the local 
radial distances of the points in each face of the model. 
One example of the 13 rendered local radial distance 
feature views of a 3D model is shown in Figure 3. These 
rendered views capture the 2D contour information as well 
as the local geometry information of the 3D model. 
 

 
Fig. 3: 13 local radial distance feature views. The grayscale 
depicts the local radial distance and darker means smaller.  
 
Finally, we compute the Zernike moments [13] (up to 10th 
order, total of 36 moments) of each view image. Therefore, 
the local radial distance feature of a 3D model is a 13×36 
matrix.  
 
  4. 3D MODEL RETRIEVAL ALGORITHM 
 
We focus on retrieval using 3D models as queries. Given a 
query model and a 3D model database, we propose a 3D 
model retrieval algorithm as follows. 
 



  (1) Coordinates normalization. To achieve translation 
and scale invariance, we first compute the bounding sphere 
[28, 7] of a 3D model, then translate the center of the 
sphere to the origin of the coordinate system and finally 
scale the model to make the radius of the sphere to be 1.0. 
  (2) Pose normalization. To improve retrieval accuracy, 
we need to align the 3D models. To concentrate on testing 
the performance of the hybrid descriptor itself, we 
manually front-pose aligned the models. 
  (3) Compute the global and local radial distance 
shape descriptors (Sections 3.2 and 3.3). For every model, 
we compute an m×n (e.g. 6×12) distance distribution 
matrix G for the global radial distance feature and an s×t 
(e.g. 13×36) Zernike moments matrix L for the local radial 
distance feature. 
  (4) Compute the shape distance vector and ranking. 
After comparing the performance of different distance 
metrics [15],  such as city block distance (L1), Euclidean 
distance (L2), Canberra distance, correlation distance and 
divergence distance, we choose the L1 distance to measure 
the difference between two global radial distance shape 
descriptors (dg) as well as the distance between two local 
radial distance shape descriptors (dl) , 
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Then, we normalize the two distance dg and dl by their 
respective maximal values over all models, and get the 
normalized distance�45C�and 4?D �� Finally, we add these two 
normalized distances together to form the hybrid shape 
distance d,    

          4 
 45C � 4?D .              (7) 

After computing the distances between the query model 
and every model in the database, we get a shape distance 
vector D = {d1, d2,E, dT}, where T is the total number of 
models in the database. Finally, we sort D in ascending 
order to give the retrieval results for the query model.  
 

5. EXPERIMENTS AND DISCUSSIONS 
 
We tested our global and local radial distances based 
hybrid descriptor (Hybrid, and its global and local 
components are referred as Global and Local) on the 
Princeton Shape Benchmark Database (PSB) [24] and the 
National Taiwan University Benchmark (NTU) [4]. We 
also compared it with two typical histogram-based 
descriptors which are shape distribution (D2) [21, 22] and 
shape histogram (SHELL, SECTOR and SPIDER) [1], and 
one famous and typical view-based approach named 
LightField descriptor (LF) [4].  
 
After getting the distance matrix for a set of models, we 
mainly used the tools provided in PSB to generate the 
precision-recall plots [24]. Precision-recall plot is one of 
the most often used measures to evaluate the performance 
of a retrieval algorithm. Recall means how much 
percentage of a class has been retrieved among the top K 

list while precision indicates how much percentage of the 
top K models belongs to the same type as the query model. 
 
5.1 Princeton Database 
 
The test dataset of Princeton Shape Benchmark Database 
(PSB) [24] contains 907 models, classified into 131 classes. 
For the precision-recall plots of D2 and SHELL (shape 
histogram) descriptors, we refer to the experiment results 
in [24] and these two descriptors are rotation-invariant. For 
the SECTOR and SPIDER descriptors, we plot the results 
[24] of their original algorithms as a reference and they 
used the PCA [11] to align the models. For the LightField 
descriptor, we generate the precision-recall plot by running 
their program on the front-pose aligned PSB database. 
Figure 4 shows the precision-recall plots of the above 
methods and our hybrid descriptor (together with its two 
components Global and Local).  
 

 
Fig. 4: PSB database: precision-recall plots.   

 
If we measure the average precision using Area Under 
Curve (AUC), the Average Precision (AP) of the six 
descriptors are: Hybrid: 62.84%; D2: 22.25%, SHELL: 
19.61%, SECTOR: 27.15%, SPIDER: 27.96%, LF: 
55.99%.  
 
As can be seen from Figure 4 and their AP values, we can 
conclude that our hybrid descriptor outperforms D2, shape 
histogram (SHELL, SECTOR and SPIDER) and LF 
descriptors.  It is also indicated that in the case of PSB 
database, the local radial distance performs better than the 
global radial distance and it contributes more to the 
superior performance of the hybrid shape descriptor. 
Though the global radial distance performs not better than 
LF, it still contributes to the overall performance of the 
hybrid shape descriptor. It takes on average only 0.07 
second for a PC with an Intel Core 2 2.66GHz CPU to 
compute the global radial distance feature of a 3D model in 
the PSB database. Therefore, it does not add much 
computation.  

 
For the 131 classes in the PSB database, we found that our 
hybrid descriptor performs better in retrieving classes such 
as computer monitor, chair (either desk or dinning), door, 
electrical guitar, eyeglass, fish, hand gun, human, hourglass, 



race car, rabbit, sedan and sword, and has inferior 
performance in retrieving barn, bush, butterfly, cabinet, 
satellite, staircase, two-story home and vase models. The 
performances of other classes are just fall in-between. 
Figure 5 gives several typical classes’ precision-recall plots 
of our hybrid descriptor and the LightField descriptor.    
 

 
Fig. 5: PSB database class precision: biplane, human and 
electrical guitar.   
 

5.2 NTU Database 
 
The NTU 3D Model Benchmark [4] contains 1833 3D 
models. 549 3D models are clustered into 47 classes and 
the rest 1284 models are classified as “miscellaneous”. We 
tested the performance using the classified 549 models.  
Figure 6 plots the precision-recall plots of our hybrid 
descriptor and the LightField descriptor.   
 

 

 Fig. 6: NTU database: precision-recall plots.   
 
As can be seen, the performance of our hybrid shape 
descriptor is still better than the LightField descriptor. 
Their Average Precision (AP) values are: Hybrid: 62.41%, 
LF: 56.53%. For this database, the global radial distance 
can achieve a comparable performance as that of the local 
radial distance. However, neither of them can outperform 
LF for all the recall values. When we combine them to 
form the hybrid distance, it exceeds LF along all the path 
of the precision-recall curve. We can also find that the local 

radial distance has more contribution to the performance of 
the hybrid shape descriptor when recall is larger than 0.3, 
which means retrieving more than 30% relevant models. 
This suggests adding the global radial distance can push 
the relevant model forward in the retrieval list. From both 
PSB and NTU database, we can see that the 
precision-recall curves of the hybrid descriptor are always 
above the curves of either the local or the global distance 
descriptors.  
 
For the classified 47 classes, our hybrid shape descriptor 
does well in retrieving the following classes: ball, bike, 
book, bottle, car, casket, chip, door, driver, facemask, glass, 
guitar, gun, hat, hydrant, knife, motorcycle, plane, shield, 
starship, stick, submarine and sword. It has low 
performance for drum and pot classes. Others’ 
performances fall in-between. Figure 7 shows the first 
10-nearest neighbor results for two typical retrieval 
examples. We can see that our method can achieve more 
accurate retrieval lists for these types of models.  

 

 

 
Fig. 7: Two retrieval examples: our hybrid descriptor: the 
first row; LF: the second row. The left most model of each 
row is the query model.   

 
6. CONCLUSION AND FUTURE WORK 

 
We have proposed a hybrid shape descriptor by combining 
the histogram-based approach and view-based approach. It 
integrates their advantages and simultaneously avoids their 
shortcomings. The hybrid shape descriptor is comprised of 
a global radial distance feature and a local radial distance 
feature. We can efficiently extract the global radial distance 
feature using a histogram-based approach and compute an 
effective local feature based on a view-based approach. 
The local feature already can outperform the well-known 
view-based approach, LightField [4]. Adding the global 
feature can further improve the performance without 
adding much computation load. To compute the global 
radial distance, we compute the distance from the center of 
the bounding sphere and sample sparsely only on the face 
centers by area-weighting. We define the local radial 
distance feature by dividing the axis-aligned bounding 
cube of a 3D model into a set of small cubes and compute 
the local radial distance based on the closest local center. 
To compute the difference between the local radial distance 
features, we encode them as color information into 13 view 
images of the model and then use the Zernike moments to 
compare two views.   
 
We have presented a hybrid radial distance feature based 
retrieval algorithm. The hybrid feature improves the 
retrieval performance and can achieve better results 



compared to several typical histogram-based approaches 
like shape histogram [1], shape distribution [21, 22] and 
the well-know view-based approach, LightField [4].  
 
It should be noted that this paper has been primarily 
concerned with constructing an effective shape descriptor. 
Therefore, testing the influence of different alignment 
algorithms, such as PCA and continuous PCA (CPCA) [27] 
on our descriptor is our main future work.     
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